The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73.

نویسندگان

  • Assia Zigha
  • Eric Rosenfeld
  • Philippe Schmitt
  • Catherine Duport
چکیده

Glucose-grown cells of Bacillus cereus respond to anaerobiosis and low extracellular oxidoreduction potentials (ORP), notably by enhancing enterotoxin production. This response involves the ResDE two-component system. We searched the B. cereus genome for other redox response regulators potentially involved in this adaptive process, and we identified one gene encoding a protein predicted to have an amino acid sequence 58% identical (80% similar) to that of the Bacillus subtilis Fnr redox regulator. The fnr gene of the food-borne pathogen B. cereus F4430/73 has been cloned and partially characterized. We showed that fnr was up-regulated during anaerobic fermentation, especially when fermentation occurred at low ORP (under highly reducing conditions). The expression of fnr was down-regulated in the presence of O(2) and nitrate which, unlike fumarate, stimulated the respiratory pathways. The inactivation of B. cereus fnr abolished fermentative growth but only moderately affected aerobic and anaerobic nitrate respiratory growth. Analyses of glucose by-products and the transcription profiles of key catabolic genes confirmed the strong regulatory impact of Fnr on B. cereus fermentative pathways. More importantly, the fnr mutation strongly decreased the expression of PlcR-dependent hbl and nhe genes, leading to the absence of hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) secretion by the mutant. These data indicate that fnr is essential for both fermentation and toxinogenesis. The results also suggest that both Fnr and the ResDE two-component system belong to a redox regulatory pathway that functions at least partially independently of the pleiotropic virulence gene regulator PlcR to regulate enterotoxin gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system.

In contrast to Bacillus subtilis, the role of the two-component regulatory system ResDE has not yet been investigated in the facultative anaerobe Bacillus cereus. We examined the role of ResDE in the food-borne pathogen B. cereus F4430/73 by constructing resDE and resE mutants. Growth performances, glucose metabolism, and expression of hemolysin BL (Hbl) and nonhemolytic enterotoxin (Nhe) were ...

متن کامل

Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus.

The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus g...

متن کامل

ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus.

Bacillus cereus Fnr is a member of the Crp/Fnr (cyclic AMP-binding protein/fumarate nitrate reduction regulatory protein) family of helix-turn-helix transcriptional regulators. It is essential for the expression of hbl and nhe enterotoxin genes independently of the oxygen tension in the environment. We studied aerobic Fnr binding to target sites in promoters regulating the expression of enterot...

متن کامل

Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).

Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimi...

متن کامل

Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression.

Bacillus subtilis grows in the absence of oxygen using nitrate ammonification and various fermentation processes. Lactate, acetate, and 2,3-butanediol were identified in the growth medium as the major anaerobic fermentation products by using high-performance liquid chromatography. Lactate formation was found to be dependent on the lctEP locus, encoding lactate dehydrogenase and a putative lacta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 7  شماره 

صفحات  -

تاریخ انتشار 2007